Footnotes
# Comparison with smoke from a scientific standard reference cigarette (approximately 9 mg tar) in terms of the average of the 9 harmful components the World Health Organization recommends to reduce in cigarette smoke.
^ Oral Tobacco Products operate at ambient temperature but placed here as number of chemicals in its extract are in the 100s.
References
[1] IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, Tobacco Smoke and Involuntary Smoking (No. 83). World Health Organization and International Agency for Research on Cancer, 2004. Available at: https://www.ncbi.nlm.nih.gov/books/NBK316407/
[2] Jenkins, R.A., et al., Mainstream and sidestream smoke, In The chemistry of environmental tobacco smoke: composition and measurement (2nd ed). CRC Press, 2000. p. 49-75 DOI: 10.1201/9781482278651
[3] Rodgman, A. and Perfetti, T.A., The chemical components of tobacco and tobacco smoke. CRC press, 2008. DOI: 10.1201/9781420078848
[4] Baker, R.R., A review of pyrolysis studies to unravel reaction steps in burning tobacco. J Anal Appl Pyrolysis, 1987. 11: p 555-573. DOI: 10.1016/0165-2370(87)85054-4
[5] Eaton, D., et al., Assessment of tobacco heating product THP1.0. Part 2: product design, operation and thermophysical characterisation. Regul Toxicol Pharmacol, 2018. 93: p. 4-13. DOI: 10.1016/j.yrtph.2017.09.009
[6] Forster, M., et al., Assessment of novel tobacco heating product THP1.0. Part 3: Comprehensive chemical characterisation of harmful and potentially harmful aerosol emissions. Regul Toxicol Pharmacol, 2018. 93: p. 14-33. DOI: 10.1016/j.yrtph.2017.10.006
[7] Savareear B., et al., Non-targeted analysis of the particulate phase of heated tobacco product aerosol and cigarette mainstream tobacco smoke by thermal desorption comprehensive two-dimensional gas chromatography with dual flame ionisation and mass spectrometric detection. J Chromatogr A, 2019. 1603: p. 327-337. DOI: 10.1016/j.chroma.2019.06.057
[8] Savareear, B., et al., Headspace solid-phase microextraction coupled to comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry for the analysis of aerosol from tobacco heating product. J Chromatogry A, 2017. 1520: p. 135-142. DOI: 10.1016/j.chroma.2017.09.014
[9] Margham, J., et al., Chemical composition of aerosol from an e-cigarette: a quantitative comparison with cigarette smoke. Chem Res Toxicol, 2016. 29(10): p. 1662-1678. DOI: 10.1021/acs.chemrestox.6b00188
[10] Pinto, M.I., et al., Chemical characterisation of the vapour emitted by an e-cigarette using a ceramic wick-based technology. Sci Rep, 2022. 12(1):16497. DOI: 10.1038/s41598-022-19761-w
[11] Dalrymple, A., et al., Assessment of enamel discoloration in vitro following exposure to cigarette smoke and emissions from novel vapor and tobacco heating products. Am J Dent, 2018. 31(5): p. 227-233. Available at: https://pubmed.ncbi.nlm.nih.gov/30346667/
[12] Azzopardi, D., et al., Chemical characterization of tobacco-free “modern” oral nicotine pouches and their position on the toxicant and risk continuums. Drug Chem Toxicol, 2022. 45(5): p. 2246-2254. DOI: 10.1080/01480545.2021.1925691
[13] WHO, The Scientific Basis of Tobacco Product Regulation. WHO Press, 2008. https://iris.who.int/bitstream/handle/10665/43997/TRS951_eng.pdf
[14] Jaunky, T., et al., Assessment of tobacco heating product THP1.0. Part 5: In vitro dosimetric and cytotoxic assessment. Regul Toxicol Pharmacol, 2018. 93: p. 52-61. DOI: 10.1016/j.yrtph.2017.09.016
[15] Taylor, M., et al., Assessment of novel tobacco heating product THP1.0. Part 6: a comparative in vitro study using contemporary screening approaches. Regul Toxicol Pharmacol, 2018. 93: p. 62-70. DOI: 10.1016/j.yrtph.2017.08.016
[16] Thorne, D., et al., Assessment of novel tobacco heating product THP1.0. Part 7: Comparative in vitro toxicological evaluation. Regul Toxicol Pharmacol, 2018. 93: p. 71-83. DOI: 10.1016/j.yrtph.2017.08.017
[17] Murphy, J., et al., Assessment of tobacco heating product THP1.0. Part 9: The placement of a range of next-generation products on an emissions continuum relative to cigarettes via pre-clinical assessment studies. Regul Toxicol Pharmacol, 2018. 93: p. 92-104. DOI: 10.1016/j.yrtph.2017.10.001
[18] Goodall, S., et al., Evaluation of behavioural, chemical, toxicological and clinical studies of a tobacco heated product glo™ and the potential for bridging from a foundational dataset to new product iterations. Toxicol Rep, 2022. 9: p. 1426-1442. DOI: 10.1016/j.toxrep.2022.06.014
[19] Taylor, M., et al., E-cigarette aerosols induce lower oxidative stress in vitro when compared to tobacco smoke. Toxicol Mech Methods, 2016. 26(6): p. 465-476. DOI: 10.1080/15376516.2016.1222473
[20] Thorne, D., et al., The mutagenic assessment of an electronic-cigarette and reference cigarette smoke using the Ames assay in strains TA98 and TA100. Mutat, 2016. 812: p. 29-38. DOI: 10.1016/j.mrgentox.2016.10.005
[21] Azzopardi, D., et al., Electronic cigarette aerosol induces significantly less cytotoxicity than tobacco smoke. Toxicol Mech Methods, 2016. 26(6): p. 477-491. DOI: 10.1080/15376516.2016.1217112
[22] Bishop, E., et al., An in vitro toxicological assessment of two electronic cigarettes: E-liquid to aerosolisation. Curr Res Toxicol, 2024. 6:100150. DOI: 10.1016/j.crtox.2024.100150
[23] Bishop, E., et al., A contextualised e-cigarette testing strategy shows flavourings do not impact lung toxicity in vitro. Toxicol Lett, 2023. 380: p. 1-11. DOI: 10.1016/j.toxlet.2023.03.006
[24] Bishop, E., et al., An approach for the extract generation and toxicological assessment of tobacco-free ‘modern’ oral nicotine pouches. Food Chem Toxicol, 2020. 145:111713. DOI: 10.1016/j.fct.2020.111713
[25] East, N., et al., A screening approach for the evaluation of tobacco-free ‘modern oral’ nicotine products using Real Time Cell Analysis. Toxicol Rep, 2021. 8: p. 481-488. DOI: 10.1016/j.toxrep.2021.02.014
[26] Yu, F., et al., Multi-endpoint in vitro toxicological assessment of snus and tobacco-free nicotine pouch extracts. Mutat, 2024. 895: p. 503738. DOI: 10.1016/j.mrgentox.2024.503738